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ABSTRACT: Weaning weights from nine parental
breeds and three composites were analyzed to esti-
mate variance due to grandmaternal genetic effects
and to compare estimates for variance due to maternal
genetic effects from two different models. Number of
observations ranged from 794 to 3,465 per population.
Number of animals in the pedigree file ranged from
1,244 to 4,326 per population. Two single-trait animal
models were used to obtain estimates of covariance
components by REML using an average information
method. Model 1 included random direct and maternal
genetic, permanent maternal environmental, and
residual environmental effects as well as fixed sex ×
year and age of dam effects. Model 2 in addition
included random grandmaternal genetic and perma-
nent grandmaternal environmental effects to account
for maternal effects of a cow on her daughter’s
maternal ability. Non-zero estimates of proportion of
variance due to grandmaternal effects were obtained

for 7 of the 12 populations and ranged from .03 to .06.
Direct heritability estimates in these populations were
similar with both models. Existence of variance due to
grandmaternal effects did not affect the estimates of
maternal heritability (m2) or the correlation between
direct and maternal genetic effects (ram) for Angus
and Gelbvieh. For the other five populations, magni-
tude of estimates increased for both m2 and ram when
estimates of variance due to grandmaternal effects
were not zero. Estimates of the correlation between
maternal and grandmaternal genetic effects were
large and negative. These results suggest that grand-
maternal effects exist in some populations, that when
such effects are ignored in analyses maternal herita-
bility may be underestimated, and that the correlation
between direct and maternal genetic effects may be
biased downward if grandmaternal effects are not
included in the model for weaning weight of beef
cattle.
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Introduction

Animal models used to analyze maternally in-
fluenced traits of beef cattle (e.g., birth and weaning
weights) typically include direct and maternal effects
and a permanent environmental effect of the dam
(e.g., Meyer, 1992b; Waldron et al., 1993; Robinson,
1996a). This model was originally proposed by Will-
ham (1963), but, it is actually used in a “reduced”

form because the environmental dam-offspring covari-
ance is assumed to be zero (Koerhuis and Thompson,
1997). Thompson (1976) and Meyer (1992a)
described the difficulties of estimating all of the
parameters in Willham’s model. The assumption of a
zero environmental dam-offspring covariance may
result in a more accurate estimate of the remaining
variance components, but the failure to account for a
non-zero environmental covariance between dam and
offspring may bias the estimates of the correlation
between the direct and the maternal genetic effects
(Koerhuis and Thompson, 1997). This correlation,
which is often estimated to be negative (see Meyer,
1992b), may be biased downward due to a negative
influence of dams on their daughters’ maternal ability
through overfeeding (e.g., Koch, 1972; Willham, 1972;
Baker, 1980; Cantet et al., 1988). Concern that
estimates of the correlation between direct and
maternal genetic effects might be biased is also
expressed in National Cattle Evaluation programs; 6
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of 12 breed associations assume this correlation to be
zero (BIF, 1996).

Willham (1972) extended his model to include
grandmaternal effects (i.e., the influence of the
maternal granddam phenotype on the dam’s maternal
effect). Such a model was used to estimate maternal
and grandmaternal effects for birth and weaning
weights in Hereford cattle (Dodenhoff et al., 1998a);
grandmaternal effects were found to be important for
weaning weight.

Our objectives were to estimate grandmaternal
genetic effects for weaning weight in different breeds
and to compare estimates of maternal genetic effects
from models including or not including grandmaternal
effects.

Materials and Methods

Data for this analysis were from the U.S. Meat
Animal Research Center (USMARC) at Clay Center,
NE where nine parental breeds and three composites
were used to analyze breed effects and heterosis
retention in composite populations of beef cattle.
Details on how the parental breed populations were
established and how they were mated to create the
composites can be found in Gregory et al. (1991). The
parental breeds either were maintained as closed
breeding populations, came from upgrading programs,
or were mated to establish the composites: MARC I (1/
4 Braunvieh, 1/4 Charolais, 1/4 Limousin, 1/8 Angus,
and 1/8 Hereford), MARC II (1/4 Gelbvieh, 1/4
Simmental, 1/4 Angus, and 1/4 Hereford), and MARC
III (1/4 Pinzgauer, 1/4 Red Poll, 1/4 Angus, and 1/4
Hereford). Weaning weight records adjusted to 200 d
were from calves born from 1978 through 1992
(Pinzgauer started in 1982, MARC III in 1980).
Pedigree information from parents without records
was added. Average 200-d weaning weights and
numbers of records, sires, dams, granddams, and
animals in the relationship matrix are given in Table
1.

Each population was analyzed separately with two
single-trait animal models. Fixed effects fitted in both
models were sex × year combination and age of dam,
where age of dam had four levels (2, 3, 4, and 5 yr and
older). Model 1 was Willham’s (1963) basic model,
but the covariance between permanent environmental
effects of the dam and error effects was assumed to be
zero:

y = Xb + Z1a + Z2m + W1p + e

Model 2 was based on Model 1 and was extended to
include grandmaternal effects:

y = Xb + Z1a + Z2m + Z3g + W1p + W2q + e

where y is a N × 1 vector of observations; b is the
vector of fixed effects; a, m, and g are vectors of
breeding values for direct genetic, maternal genetic,
and grandmaternal genetic effects; p and q are vectors
of permanent maternal environmental and permanent
grandmaternal environmental effects; e is the vector
of random error effects; and X, Z1, Z2, Z3, W1, and W2
are known incidence matrices relating observations to
their respective fixed and random effects. Matrices Z1,
Z2, and Z3 were augmented for animals without
records that were included in the relationship matrix.
For both models,

E[y] = Xb.

The (co)variance structure of the random effects for
Model 2 was as follows:

V

a

= V =

Asa
2 Asam Asag 0 0 0

m Asam Asm
2 Asgm 0 0 0

g Asag Asgm Asg
2 0 0 0

p 0 0 0 INd
sp

2 0 0

q 0 0 0 0 INg
sq

2 0

e 0 0 0 0 0 INse
2

where Nd and Ng are numbers of dams and grandams,
respectively, and N is number of records; A is the
numerator relationship matrix among animals in the
pedigree file, and the I matrices are identity matrices.
Covariances between maternal and grandmaternal
permanent environmental effects as well as covari-
ances between permanent environmental and residual
effects were assumed to be zero. Let Z = [Z1|Z2|Z3],
W = [W1|W2], u′ = [a′|m′|g′], c′ = [p′|q′], V( u) = G,
V( c) = Q and V( e) = R so that V( y) = V = ZGZ′ +
WQW′ + R.

Extending Model 1 to include grandmaternal effects
is similar to extending a simple animal model with
only direct and residual effects to include maternal
effects. In that case, the residual effect is partitioned
into a temporary environmental effect (of the calf)
and a maternal effect that consists of a genetic effect
(maternal genetic effect), a permanent environmental
effect, and a temporary environmental effect. To
include grandmaternal effects, the temporary environ-
mental effect of the maternal effects model is parti-
tioned into a temporary environmental effect (of the
dam) and a maternal effect that again has a genetic
effect (grandmaternal genetic effect), a permanent
environmental effect (of the granddam), and a
temporary environmental effect. The extended model
has three genetic effects, two permanent environmen-
tal effects, and three temporary environmental effects,
which are combined as a residual effect. When
Willham (1972) defined a model to include grand-
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Table 1. Characteristics of the data by breed

Weaning
weight, kg

Number

Records Sires Dams Granddams Animals

Angus 194.7 1,911 82 842 607 2,755
Braunvieh 243.1 1,321 62 560 390 1,832
Charolais 234.2 1,336 59 544 386 1,887
Gelbvieh 245.9 1,174 55 429 301 1,629
Hereford 183.8 1,395 69 571 449 2,143
Limousin 209.8 1,409 58 541 379 1,946
Pinzgauer 239.0 794 42 344 261 1,244
Red Poll 209.5 1,300 54 559 380 1,744
Simmental 243.9 1,302 69 581 424 1,995
MARC I 237.5 2,806 120 970 597 3,625
MARC II 239.6 3,465 117 1,058 710 4,326
MARC III 224.2 2,478 91 879 611 3,212

maternal effects he did not separate maternal and
grandmaternal permanent environmental effects.
Willham (1972) also noted that all the previous dams
in the pedigree could be involved in influencing the
maternal effects, but he stopped at this point to keep
the covariances as simple as possible.

Variance and covariance components were esti-
mated by REML using an average information al-
gorithm ( AI REML) (Johnson and Thompson, 1995).
The AI REML algorithm is a quasi-Newton algorithm
that uses first derivatives of the logarithm of the
likelihood ( L) and an average of observed and
expected second derivatives to find estimates of
genetic parameters that maximize L. The inverse of
the coefficient matrix needed to calculate first deriva-
tives of the likelihood was obtained using sparse
matrix algorithms described by Takahashi et al.
(1973) and implemented in FSPAK (Perez-Enciso et
al., 1992). Convergence was assumed to have been
reached if the Euclidian norm of the vector of first
derivatives was less than 10−4.

Standard errors of the estimated variance compo-
nents, heritabilities, and correlations were derived
from the inverse of the negative average information
matrix considering it to be an asymptotic dispersion
matrix of the estimated parameters (i.e., V( û) =
[−AI]−1) . A Taylor series expansion was used to
estimate variances of functions of random variables
(e.g., Stuart and Ord, 1994). See Dodenhoff et al.
(1998a) for details.

A likelihood ratio test (e.g., Dobson, 1990) was
used to compare Models 1 and 2. The difference
between the −2L values from the two models was
assumed to be distributed as x2 with four degrees of
freedom. Model 2 would seem to have five
(co)variances more than Model 1, but the covariance
between the permanent environmental effects had to
be assumed to be zero. Critical values for significance
were 9.49 ( P < .05) and 13.28 ( P < .01).

Results and Discussion

Parameter estimates from Models 1 and 2 for the 12
populations are given in Table 2. Except for Charolais
and Hereford, estimates of direct heritability (h2)
were similar in the populations, ranging from .22 to
.34. For all but two populations (Charolais and
Simmental), estimates of maternal heritabilities (m2)
were smaller than h2; the smallest estimates of m2

were for the composites and for breeds with a dual-
purpose background (Braunvieh, Gelbvieh, Pinzgauer,
and Red Poll). For these breeds, estimates of the
correlations between direct and maternal genetic
effects (ram) were positive, but they were negative for
traditional British beef breeds (e.g., Angus,
Hereford). Direct and maternal genetic covariances
were estimated previously from these data (Bennett
and Gregory, 1996; Van Vleck et al., 1996), although
different models were used.

When Model 2 was applied, estimates of variance
components due to grandmaternal genetic effects
could be obtained for 7 of the 12 populations. For the
other five populations, the grandmaternal genetic
variance tended to become negative during iteration
and, therefore, was set to a very small positive value
(10−8) in order to keep the matrix of the genetic
(co)variances positive definite while the correspond-
ing covariances were set to zero. Setting variance
components to zero or near-zero when they become
negative is only one way to deal with this problem.
There are approaches for Newton methods (see, e.g.,
Harville, 1977; Johnson and Thompson, 1995; Meyer
and Smith, 1996) that keep the estimates in the
parameter space or that, after reparameterization, do
not yield negative estimates. When all grandmaternal
components were set to near zero, Models 1 and 2
were identical for Pinzgauer, Simmental, MARC I,
and MARC III. Only for three populations could
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Table 2. Estimates of parametersa and standard errors (in parentheses)
for weaning weight (kg) by breed and model

ah2 = direct heritability, m2 = maternal heritability, g2 = grandmaternal heritability, ram = genetic correlation between direct and maternal
effects, rag = genetic correlation between direct and grandmaternal effects, rmg = genetic correlation between maternal and grandmaternal
effects, p2 = fraction of variance due to maternal permanent environmental effects, q2 = fraction of variance due to grandmaternal permanent
environmental effects, e2 = fraction of variance due to temporary environmental effects, = phenotypic variance, 2logL = 2log likelihood assp

2

deviation from Model 1.
bFunction value smaller ( P < .05) than the function value for Model 1.
cFunction value smaller ( P < .01) than the function value for Model 1.
dEstimate set to zero.
eModel 1 and 2 identical after grandmaternal components set to zero.

Model 1 Model 2

Population h2 m2 ram p2 e2 sp
2

2logL h2 m2 g2 ram rag rmg p2 q2 e2 sp
2

Angus .25 .11 −.15 .21 .46 430 15.2c .22 .11 .06 −.14 .64 −.85 .15 .02 .46 441
(.07) (.06) (.22) (.04) (.05) (.06) (.07) (.00) (.22) (.30) (.42) (.06) (.04) (.05)

Braunvieh .27 .09 .28 .11 .49 489 3.7 .30 .17 .04 .38 −.70 −.53 .03 .01 .49 482
(.08) (.05) (.31) (.04) (.06) (.08) (.09) (.05) (.24) (.44) (.40) (.07) (.04) (.06)

Charolais .11 .14 −.12 .21 .56 646 10.7b .11 .32 .06 .07 −.48 −.91 .09 —d .56 639
(.05) (.06) (.30) (.05) (.05) (.05) (.14) (.00) (.26) (.44) (.36) (.08) — (.05)

Gelbvieh .27 .10 .05 .01 .61 609 5.6 .26 .11 .05 −.01 .57 −.83 —d —d .59 626
(.09) (.06) (.31) (.04) (.07) (.08) (.05) (.00) (.30) (.38) (.42) — — (.07)

Hereford .17 .16 −.37 .29 .44 518 .06 .17 .16 —d −.36 —d —d .25 .04 .44 515
(.07) (.08) (.26) (.06) (.05) (.07) (.08) — (.26) — — (.07) (.05) (.05)

Limousin .26 .14 −.18 .18 .45 526 4.0 .25 .22 .03 .01 −.03 −.99 .10 .02 .45 529
(.08) (.07) (.25) (.05) (.06) (.08) (.11) (.00) (.24) (.59) (.55) (.07) (.04) (.06)

Pinzgauer .34 .04 .40 .11 .47 539 .00e .34 .04 —d .40 —d —d .11 —d .47 539
(.10) (.05) (.57) (.05) (.08) (.10) (.05) — (.57) — — (.05) — (.08)

Red Poll .25 .07 .64 .11 .49 436 1.7 .26 .10 .05 .64 −.33 −.44 .07 —d .49 431
(.07) (.05) (.37) (.04) (.06) (.08) (.07) (.05) (.31) (.40) (.43) (.06) — (.06)

Simmental .22 .25 −.10 .05 .51 517 .00e .22 .25 —d −.10 —d —d .05 —d .51 517
(.07) (.07) (.21) (.04) (.06) (.07) (.07) — (.21) — — (.04) — (.06)

MARC I .34 .03 .51 .11 .47 557 .00e .34 .03 —d .51 —d —d .11 —d .47 557
(.06) (.02) (.41) (.03) (.05) (.06) (.02) — (.41) — — (.03) — (.05)

MARC II .23 .08 .08 .11 .57 563 5.5 .25 .14 .04 .31 −.65 −.65 .05 —d .57 556
(.05) (.03) (.22) (.02) (.04) (.05) (.05) (.02) (.19) (.28) (.26) (.04) — (.04)

MARC III .33 .03 .37 .16 .45 585 .00e .33 .03 —d .37 —d —d .16 —d .45 585
(.06) (.03) (.40) (.03) (.05) (.06) (.03) — (.40) — — (.03) — (.05)

estimates of all the (co)variance components fitted in
Model 2 be obtained.

Estimates of h2 from Model 2 were only slightly
different from those with Model 1. There was a
tendency for higher estimates of m2 with Model 2 than
with Model 1. However, an increase in the estimates of
m2 from Model 1 to Model 2 comparable in magnitude
to the increase observed for selected lines of Hereford
cattle (Dodenhoff et al., 1998a) occurred only for
Charolais. Including grandmaternal effects in the
model had little effect on estimates of m2 for Angus
and Gelbvieh. In analyses of larger data sets of Angus
cattle, estimates of m2 increased on average from .15
with Model 1 to .21 with Model 2 (Dodenhoff et al.,
1998b). Estimates of grandmaternal genetic effects
(g2) were small and similar across populations (.03 to
.06). Estimates of g2 had to be set to near zero for
those populations that had the smallest estimates of
m2 with Model 1 (Pinzgauer, MARC I, MARC III).

For Hereford and Simmental, estimates of g2 had to be
set to near zero, even though, for these breeds,
estimates of m2 with Model 1 were relatively large. In
those cases the data structure may have been
insufficient to estimate all parameters in a model with
a relatively complicated covariance structure such as
Model 2.

Changes in estimates of the correlation between
direct and maternal genetic effects seemed to be
closely related to changes in estimates of m2, indicat-
ing that increased estimates of maternal genetic
variances were more important for the increased
estimates of ram from Model 2 than increased esti-
mates of direct-maternal genetic covariances. For
Charolais and Limousin, the correlation was positive
with Model 2 but was negative with Model 1. Large
negative correlations were observed between maternal
and grandmaternal genetic effects (rmg) , thus con-
firming Willham (1972), who expected the covariance
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Table 3. Product-moment (PM) and rank (R)
correlations between estimated breeding values for

direct weaning weight (WWd) from Models 1 and 2
and between estimated breeding values for maternal

weaning weight (WWm) from Models 1 and 2
for breeds with nonzero estimates of

grandmaternal genetic variance

WWd WWm

Breed PM R PM R

Angus .977 .977 .821 .792
Braunvieh .990 .989 .982 .981
Charolais .985 .978 .948 .940
Gelbvieh .987 .987 .937 .935
Limousin .993 .992 .951 .946
Red Poll .997 .997 .990 .992
MARC II .992 .990 .960 .958

between these effects to be negative if overfeeding a
calf has a negative influence on its performance as a
dam. This negative influence seemed to be smaller for
breeds that had a moderate positive correlation
between direct and maternal genetic effects (Braun-
vieh, Red Poll, and MARC II). The large negative
estimates of rmg may be the reason for the increase in
estimates of m2 from Model 1 to Model 2. A dam with
above-average maternal ability most likely will have
had a dam that also had above-average maternal
ability and, therefore, has had a negative influence on
the daughter’s maternal ability, and vice versa. Model
2 accounts for these effects, and, in Model 1, maternal
effects are “overshadowed” by grandmaternal effects.
Estimates of the correlations between direct and
grandmaternal genetic effects (rag) ranged from −.70
to .64, with the sign being the opposite of the sign for
the estimates of ram. Any relationship of the magni-
tude of the rag estimates to any of the other
parameters was not obvious. When Willham (1972)
defined a model to include grandmaternal effects he
questioned the existence of a non-zero covariance
between direct and grandmaternal genetic effects.

Estimates of the fraction of variance due to
permanent maternal environmental effects (p2)
decreased from Model 1 to Model 2. Only for three of
the populations in which grandmaternal genetic
effects were found could estimates of the fraction of
variance due to permanent grandmaternal environ-
mental effects (q 2) be obtained. Those estimates were
small (.01 to .02), suggesting that permanent en-
vironmental effects of the granddam probably could be
dropped from the model without greatly affecting the
results. These effects then would likely be included in
the permanent environmental effects of the dam
(Willham, 1972).

Likelihood ratio tests suggested that grandmater-
nal heritabilities of at least .06 were required to make
Model 2 a significantly better fit to the data than
Model 1 (Table 2).

Standard errors of the estimated parameters from
Model 2, particularly of the correlations, were large
(Table 2), indicating that much larger data sets will
be necessary in order to obtain standard errors of a
reasonable magnitude from models with complicated
(co)variance structures.

Product-moment and rank correlations between
breeding values for direct weaning weight and be-
tween breeding values for maternal weaning weight
from Models 1 and 2 are given in Table 3. Including
grandmaternal effects in the model had a greater
effect on breeding values for maternal weaning weight
than on breeding values for direct weaning weight.
For Angus, the correlations between breeding values
for maternal weaning weight were considerably lower
than those for the other breeds. The magnitude of the
estimated grandmaternal genetic effects and the

difference between the likelihood values from Models 1
and 2, respectively, seemed to have a greater effect on
the correlations than an increase in the estimates of
the maternal genetic effects from Model 1 to Model 2.

More recently, other approaches have dealt with the
problem of a potentially biased correlation between
direct and maternal effects (e.g., Robinson, 1996b;
Koerhuis and Thompson, 1997; Lee and Pollak, 1997).
Koerhuis and Thompson (1997) considered the
problem to be the assumption that an environmental
dam-offspring covariance does not exist. They obtained
the best results from a model that did not allow for a
dam-offspring covariance but did include the dam’s
phenotype as a linear covariate (Falconer, 1965). A
model that includes grandmaternal effects, such as the
one used in this analysis, is computationally more
demanding than the integrated “Falconer-Willham”
model (Koerhuis and Thompson, 1997) because it fits
a third random genetic effect that directly considers
the genetic effect of a dam on her daughter’s maternal
ability. However, the integrated “Falconer-Willham”
model overcomes criticism by Lande and Kirkpatrick
(1990), who argued that Willham’s (1963, 1972)
models do not account for cycles of maternal effects.
Quintanilla et al. (1998) proposed a model that
includes a covariance between permanent maternal
environmental effects of all dams in line of descent to
account for a nongenetic covariance between direct
and maternal effects.

Similar to Robinson (1996b), Lee and Pollak
(1997) focused on the effect of sire × year interactions
on the correlation between direct and maternal effects
and found the correlation to be biased downward if
sire × year interactions are ignored in the estimation
model. Meyer (1997), who applied the “Falconer-
Willham” model and additionally included a sire ×
herd-year interaction, found direct-maternal genetic
correlations to be considerably less negative compared
to the “usual” model.
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Implications

Including grandmaternal effects in models for
genetic analysis of weaning weight seems to be
important for populations with large maternal effects.
Results show that grandmaternal effects exist in some
populations. Probably more importantly, when grand-
maternal effects exist, maternal heritabilities may be
underestimated and correlations between direct and
maternal effects may be biased downward with models
typically used to estimate maternal effects for wean-
ing weight. Because of the relatively large standard
errors in the present analyses, larger data sets need to
be analyzed in order to estimate the magnitude of
biases in different populations more conclusively.
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